Angiogenesis Impairment in Diabetes: Role of Methylglyoxal-Induced Receptor for Advanced Glycation Endproducts, Autophagy and Vascular Endothelial Growth Factor Receptor 2

نویسندگان

  • Hongtao Liu
  • Shujie Yu
  • Hua Zhang
  • Jian Xu
چکیده

Diabetes impairs physiological angiogenesis by molecular mechanisms that are not fully understood. Methylglyoxal (MGO), a metabolite of glycolysis, is increased in patients with diabetes. This study defined the role of MGO in angiogenesis impairment and tested the mechanism in diabetic animals. Endothelial cells and mouse aortas were subjected to Western blot analysis of vascular endothelial growth factor receptor 2 (VEGFR2) protein levels and angiogenesis evaluation by endothelial cell tube formation/migration and aortic ring assays. Incubation with MGO reduced VEGFR2 protein, but not mRNA, levels in a time and dose dependent manner. Genetic knockdown of the receptor for advanced glycation endproducts (RAGE) attenuated the reduction of VEGFR2. Overexpression of Glyoxalase 1, the enzyme that detoxifies MGO, reduced the MGO-protein adducts and prevented VEGFR2 reduction. The VEGFR2 reduction was associated with impaired angiogenesis. Suppression of autophagy either by inhibitors or siRNA, but not of the proteasome and caspase, normalized both the VEGFR2 protein levels and angiogenesis. Conversely, induction of autophagy either by rapamycin or overexpression of LC3 and Beclin-1 reduced VEGFR2 and angiogenesis. MGO increased endothelial LC3B and Beclin-1, markers of autophagy, which were accompanied by an increase of both autophagic flux (LC3 punctae) and co-immunoprecipitation of VEGFR2 with LC3. Pharmacological or genetic suppression of peroxynitrite (ONOO(-)) generation not only blocked the autophagy but also reversed the reduction of VEGFR2 and angiogenesis. Like MGO-treated aortas from normglycemic C57BL/6J mice, aortas from diabetic db/db and Akita mice presented reductions of angiogenesis or VEGFR2. Administration of either autophagy inhibitor ex vivo or superoxide scavenger in vivo abolished the reductions. Taken together, MGO reduces endothelial angiogenesis through RAGE-mediated, ONOO(-)dependent and autophagy-induced VEGFR2 degradation, which may represent a new mechanism for diabetic angiogenesis impairment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological role of adenosine and its receptors in tissue hypoxia-induced

It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...

متن کامل

The role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells

Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...

متن کامل

VEGF resistance as a molecular basis to explain the angiogenesis paradox in diabetes mellitus.

The action of VEGF (vascular endothelial growth factor) is essential to maintain proper endothelial and vascular function. VEGF stimulates virtually all aspects of endothelial function, namely proliferation, migration, permeability and nitric oxide production and release. In addition, the action of VEGF makes the endothelium anti-apoptotic. In turn, the inhibition of VEGF action is associated w...

متن کامل

Receptor for advanced glycation end products involved in circulating endothelial cells release from human coronary endothelial cells induced by C-reactive protein

Objective(s): This study was designed to investigate the effect of receptor for advanced glycation end products (RAGE), S100A12 and C-reactive protein (CRP) on the release of circulating endothelial cells (CECs) from human coronary artery endothelial cells (HCAECs). Materials and Methods: HCAECs were cultured in increasing concentration of CRP (0, 12.5, 25, 50μg/ml) or S100A12 protein (0, 4, 1...

متن کامل

Determination of Vascular Endothelial- and Fibroblast-Growth Factor Receptors in a Mouse Fibrosarcoma Tumor Model Following Photodynamic Therapy

The role of angiogenic molecules, like vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) in tumor angiogenesis was well confirmed. Photodynamic therapy (PDT) action is, to very high degree, based on tumor vasculature damage. Therefore, it seemed to be important to evaluate growth factor receptors after PDT. The extent of receptor expression was studied by immuno-histo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012